The C-6 proton of tetrahydrobiopterin is acquired from water, not NADPH, during de novo biosynthesis.
نویسندگان
چکیده
Tetrahydrobiopterin, the cofactor for the aromatic amino acid hydroxylases, is synthesized in mammals from GTP via a pathway involving both dihydropterin and tetrahydropterin intermediates. In this work, we have investigated the mechanism of conversion of the product formed from GTP, 7,8-dihydroneopterin triphosphate, into the tetrahydropterin intermediates. Tetrahydrobiopterin can be oxidized under conditions which yield pterin or pterin 6-carboxylate without exchange of the C-6 and C-7 protons. Using these techniques, a gas chromatography/mass spectrometry method was developed to determine that in the biosynthesis of tetrahydrobiopterin de novo, in preparations of bovine adrenal medulla, the C-6 proton of tetrahydrobiopterin is derived from water and not from NADPH. In contrast, the C-6 proton of tetrahydrobiopterin produced from sepiapterin (6-lactoyl-7,8-dihydropterin) comes from NADPH. The results are consistent with evidence for the formation of the first tetrahydropterin intermediate by a tautomerization without any requirement for NADPH.
منابع مشابه
Synthesis, utilization, and structure of the tetrahydropterin intermediates in the bovine adrenal medullary de novo biosynthesis of tetrahydrobiopterin.
The biosynthesis of two tetrahydropterin intermediates (H4pterin-1 and H4pterin-2), their conversion to tetrahydrobiopterin, and their overall chemical structures are described. A new high performance liquid chromatographic separation of these and other tetrahydropterins is also described. The biosynthesis of tetrahydrobiopterin from dihydroneopterin triphosphate proceeds in the presence of the...
متن کاملTetrahydrobiopterin biosynthesis. Studies with specifically labeled (2H)NAD(P)H and 2H2O and of the enzymes involved.
The biosynthesis of tetrahydrobiopterin from either dihydroneopterin triphosphate, sepiapterin, dihydrosepiapterin or dihydrobiopterin was investigated using extracts from human liver, dihydrofolate reductase and purified sepiapterin reductase from human liver and rat erythrocytes. The incorporation of hydrogen in tetrahydrobiopterin was studied in either 2H2O or in H2O using unlabeled NAD(P)H ...
متن کاملPeripheral administration of lipopolysaccharide enhances the expression of guanosine triphosphate cyclohydrolase I mRNA in murine locus coeruleus.
GTP cyclohydrolase I is the first and rate-limiting enzyme for the de novo biosynthesis of tetrahydrobiopterin, which is the cofactor for tyrosine hydroxylase. Lipopolysaccharide can modulate tetrahydrobiopterin production by upregulating GTP cyclohydrolase I protein expression in the locus coeruleus in the mouse brain. The increased supply of tetrahydrobiopterin in the locus coeruleus leads to...
متن کاملMicrobial Contamination of Leafy Vegetables in Porto-Novo, Republic of Benin
Background: The vegetables provide important nutrients to human beings. Nevertheless, contaminated vegetables can cause health problems because of their microbial load. The aim of this study was to assess the microbial quality of three main leafy vegetables cultivated and consumed at Porto-Novo in Republic of Benin. Methods: Totally, 36 samples of amaranth, nightshade, and lettuce were taken f...
متن کاملBiosynthesis of tetrahydrobiopterin: possible involvement of tetrahydropterin intermediates.
The biosynthetic pathway of tetrahydrobiopterin (BH(4)) from dihydroneopterin triphosphate (NH(2)P(3)) was studied in fresh as well as heat-treated human liver extracts. The question of NAD(P)H dependency for the formation of sepiapterin was examined. NH(2)P(3) was converted by fresh extracts to sepiapterin in low quantities (2% conversion) in the absence of exogenously added NADPH as well as u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 260 9 شماره
صفحات -
تاریخ انتشار 1985